
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010
873

PAPER

Video Segmentation with Motion Smoothness

Chung-Lin WEN†a), Nonmember, Bing-Yu CHEN†b), and Yoichi SATO††c), Members

SUMMARY In this paper, we present an interactive and intuitive graph-
cut-based video segmentation system while taking both color and motion
information into consideration with a stroke-based user interface. Recently,
graph-cut-based methods become prevalent for image and video segmen-
tation. However, most of them deal with color information only and usu-
ally failed under circumstances where there are some regions in both fore-
ground and background with similar colors. Unfortunately, it is usually
hard to avoid, especially when the objects are filmed under a natural en-
vironment. To make such methods more practical to use, we propose a
graph-cut-based video segmentation method based on both color and mo-
tion information, since the foreground objects and the background usually
have different motion patterns. Moreover, to make the refinement mech-
anism easy to use, the strokes drawn by the user are propagated to the
temporal-spatial video volume according to the motion information for vi-
sualization, so that the user can draw some additional strokes to refine the
segmentation result in the video volume. The experiment results show that
by combining both color and motion information, our system can resolve
the wrong labeling due to the color similarity, even the foreground moving
object is behind an occlusion object.
key words: video segmentation, stroke propagation, graph cuts

1. Introduction

As visual effects become a crucial part of current film and
commercial television production, video segmentation, a
critical step for many visual effects, arouses much interest
in the film industry and research community. The so-called
video segmentation is done to extract the foreground mov-
ing objects from the background. It could be used in mul-
tiple ways, e.g. to replace the actors to a different scene, or
reversely replace the actors with CGI (computer-generated
imagery) components. However, to extract the foreground
moving object from a complex natural background is not
only tedious but also extremely time-consuming.

Recently, graph-cut-based methods are prevalent for
image and video segmentation, but most of them use only
color similarity along with some smoothness constraints as
the segmentation criteria, which may fail when some regions
in both foreground and background have similar colors. For
instance, Fig. 1 (b) shows a result of an ordinary video seg-
mentation method with smaller smoothness weightings, and

Manuscript received August 19, 2009.
Manuscript revised December 13, 2009.
†The authors are with National Taiwan University, Taipei,

10617 Taiwan.
††The author is with The University of Tokyo, Tokyo, 153–8505

Japan.
a) E-mail: jonathan.clwen@gmail.com
b) E-mail: robin@ntu.edu.tw
c) E-mail: ysato@iis.u-tokyo.ac.jp

DOI: 10.1587/transinf.E93.D.873

Fig. 1 The comparison of the segmentation results of a walking bear
video. (a) One frame of the ordinal video. (b) Using smaller color smooth-
ness weighting, a part of the tree trunk is wrong labeled. (c) Using greater
color smoothness weighting, there are some labeling errors around the foot
of the bear. (d) Our result.

hence some background regions (the tree trunk) are wrongly
labeled, since the color of the tree trunk is similar to that
of the walking bear. In contrast, if a greater smoothness
weighting is being used, some background regions (around
the foot of the bear) near the foreground will be merged into
the foreground regions as shown in Fig. 1 (c).

Hence, in this paper, we propose a new approach to this
problem. Through our observation, in most of the cases in
video segmentation, the motion pattern of the foreground
moving object is usually quite different from that of the
background. Thus, our video segmentation method uses
both color and motion information to improve the usability.
Through our method, the wrong labeling due to the color
similarity could be resolved, even under the condition that
the moving foreground object is behind an occlusion object.

Moreover, the motion information is also used for im-
proving the stroke-based interface. Although some previous
methods allow the user to draw the strokes to indicate the
foreground and background in the temporal-spatial video
volume, it is not intuitive enough for the user. To let the
user understand how the strokes effect the video segmen-
tation result and where to draw some additional strokes, we
utilize the motion information again to propagate the strokes
drawn in some certain frames to other neighboring frames.
Hence, in our system, the user can first draw the foreground
and background strokes on the first or a certain frame as
using previous stroke-based image or video segmentation

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

874
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

tools, then refine the video segmentation result by drawing
some additional strokes on other frames while referring to
the initially drawn strokes. Furthermore, since the additional
strokes are used to refine the original result, the weighting
of them is set to be different from the original strokes in our
video segmentation algorithm.

In the rest of this paper, a brief survey of related work
is introduced in Sect. 2. The details of our video segmen-
tation algorithm and the user interface issues are described
in Sect. 3 and Sect. 4, respectively. Finally, the results are
shown in Sect. 5 and the conclusion and future work are
listed in Sect. 6.

2. Related Work

To extract a foreground object from a natural background,
there are some approaches to manually fit the boundary of
the object by editable curves, such as B-spline, which is of-
ten called rotoscoping. The process is usually operated in a
fully manually fashion, with a minor help of image snapping
tools [1]–[3] that adhere to the high contrast region or inter-
polation tools [4] that interpolate the keyframe curves to the
potential contours in the other frames, mainly according to
the gradient.

Recently, graph-cut-based methods are prevalent for
image and video segmentation, since the image and video
segmentation could be treated as a multi-labeling energy
minimization problem with extremely high complexity.
Thus, it is natural to derive an approximate solution with
guaranteed qualities. Boykov et al. [5] pioneered in the do-
main by developing the graph cuts algorithm to solve the
multi-labeling energy minimization problem. Kolmogorov
and Zabin [6] featured the energy function that could be
minimized: the necessary conditions that could be applied
in the graph cuts framework. Then, Boykov and Kol-
mogorov [7] presented some observations with experimen-
tal results while comparing with other alternative modern
approaches.

Based on the graph cuts algorithm, Li et al. presented
Video Object Cut and Paste [8] by extending their Lazy
Snapping [9] from a graph-cut-based image segmentation
method to a video volume with similar stroke-based user
interface. In addition to the data term and color smooth-
ness term used in Lazy Snapping, to eliminate the tempo-
ral artifacts, they introduced temporal coherence cost into
the energy function to be minimized. Based on Lazy Snap-
ping, Progressive Cut [10] proposed by Wang et al. intro-
duces some high level observations about the user intentions
into the original energy function of the graph-cut-based im-
age segmentation method. Besides the stroke-based image
segmentation methods, there are also rectangle-based ones.
For instance, in GrabCut [11], the user can indicate the fore-
ground location by using a rectangle. However, it is con-
sidered that the stroke-based system can better utilize the
geometry nature of the input image.

Similar to Video Object Cut and Paste, Interactive
Video Cutout [12] proposed by Wang et al. also uses the

strokes to collect color information and conducted the video
segmentation in temporal-spatial space by graph cuts algo-
rithm. In the system, the strokes are allowed to be drawn
in the temporal-spatial space directly instead of a specific
frame, although to draw a stroke in the video volume is
not so intuitive for ordinary users. In the above methods,
since the color information is the only consideration, if the
foreground objects and the background have similar col-
ors, there would be some errors in the segmentation result.
Hence, in this paper, we also take the motion information
into account to handle the cases that are hard to segment
solely by only color information.

There are also some video segmentation methods deal
with the occlusion condition. Xiao et al. [13] proposed a
system to conduct motion layer extraction in the presence of
occlusion condition. The system mainly has two stages, the
first one is to segment the seed regions using motion similar-
ity. Then, by employing some heuristics that the occlusion
area will always increase with time, the system conducts the
final segmentation by graph cuts algorithm to refine the seg-
mentation result. Although the system also uses motion in-
formation for video segmentation, our method is more gen-
eral since we do not make any assumption on the type of
occlusion.

Bai et al. [14] also presented a video segmentation
method to solve the same problem by incorporating addi-
tional user input. Whenever the occlusion occurs, the user
can draw additional strokes in the other side of the video vol-
ume relative to the initial strokes. However, since our video
segmentation method takes the motion information into con-
sideration, in many cases, the user is not requested to draw
the additional strokes to solve the occlusion problem. More-
over, through our intuitive stroke-based user interface with
propagated strokes, it is much easier to draw the additional
strokes to refine the segmentation result if necessary.

3. Video Segmentation with Color & Motion

Before explaining the details of our method, we first briefly
summarize a basic form of the energy function used in the
graph-cut-based video segmentation methods. In most of
the graph-cut-based video segmentation techniques, a 3D
graph is constructed based on the temporal-spatial video
volume and suitable cuts are obtained by minimizing the
following energy function:

E(lp) = Ed(p) + αEs(p) + βEt(p), (1)

where lp ∈ {F ,B} is a possible labeling of pixel p, and F
and B denote the foreground and background labels, respec-
tively, and α and β are the weightings to adjust the impor-
tance of the spatial and temporal color smoothness terms
Es(p) and Et(p), respectively. Ed(p) is the data term de-
fined in the same way as most of the previous work [8]–[10],
which measures the color similarity between the pixel p
and pre-constructed foreground and background color mod-
els. The foreground and background color models are con-
structed by collecting the pixels under the foreground and

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
875

background strokes drawn by the user at certain frames.
Es(p) and Et(p) encode color smoothness constraints for the
pixel p in the same frame and neighboring frames, respec-
tively.

The data term Ed(p) is defined as:

Ed(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P(cp|GF)

P(cp|GF) + P(cp|GB)
, if lp = F

P(cp|GB)

P(cp|GF) + P(cp|GB)
, if lp = B

where cp is the color value of the pixels p, P(cp|Gx) is the
probability that a specific pixel value cp belongs to the color
model Gx (x ∈ {F ,B}). We use 3D GMMs (Gaussian Mix-
ture Models) to describe the color distribution by collecting
the color values of the pixels under the foreground or back-
ground strokes.

The spatial smoothness term Es(p) is defined by impos-
ing the color smoothness penalty in the intra-frame neigh-
boring pixels. The smoothness penalty is reverse propor-
tional to the color difference, so that the energy minimiza-
tion procedure would prefer to assign the same label to the
pixels that have smaller color difference, which is defined
as:

Es(p) =
∑

q∈Ns
p

|lp − lq| · g(||cp − cq||2),

where Ns
p denotes the spatial neighboring (|Ns

p| = 8) pixels
of the pixel p in the same frame, and g(x) = 1/x + 1 is used
to implement inverse relation.

In addition, video segmentation is different from image
segmentation in that the former one should also consider the
problem of temporal coherence. Otherwise, it will intro-
duce serious temporal artifacts, which people are more sen-
sitive to. Hence, besides the intra-frame color coherence,
we should also encode the temporal coherence by adding
the inter-frame arcs and imposing the penalty for temporal
incoherence. The temporal coherence penalty also follows
the principle that pixels have similar color should be labeled
as the same value, thus is also set to the reverse proportion
to the color difference as:

Et(p) =
∑

q∈Nt
p

|lp − lq| · g(||cp − cq||2),

where Nt
p denotes the temporal neighboring (|Nt

p| = 2) pixels
of the pixel p in the neighboring frames. After encoding
the temporal coherence, the result is free from most of the
temporal artifacts.

3.1 The Motion Smoothness Term

Although the above energy function works well in certain
cases, there are still several failed cases when some of the
foreground and background regions have similar colors. The
failed cases may be solved by adjusting the weightings α
and β carefully, but it is a tedious task and suitable weight-
ings are usually difficult to find. To make the system more

easy to use, we must enlarge the suitable range for param-
eter tuning. Hence, we find another criteria that is different
in foreground and background. It can be observed that the
motion patterns in the video are usually different for fore-
ground and background objects, thus we propose to use the
motion information as the other segmentation criteria and
encode the motion smoothness term Em(p) in Eq. 1, so Eq. 1
can be rewritten as:

E(lp) = Ed(p) + αEs(p) + βEt(p) + γEm(p). (2)

Similar to color smoothness terms Es(p) and Et(p), we
prefer to label the pixels that have similar motion patterns
with the same value, thus we impose motion smoothness
penalty for the pixels that are different in motion direction.
Hence, the motion smoothness term Em(p) is defined as:

Em(p) =
∑

q∈Ns
p

|lp − lq| · g(vp · vq),

where vp · vq is the inner product of the motion vectors vp

and vq of the pixels p and q.
To make the motion vectors vp and vq as stable as pos-

sible, a revised optical flow algorithm proposed by Brox
et al. [15] is used, since it can produce relatively denser op-
tical flow information, which is a critical condition for the
calculation of the motion smoothness cost. However, since
the raw optical flow still has some noises, we further con-
duct color-guided weighting average in the fashion similar
to [16]:

vp =

∑
q∈{Ns

p+Nt
p+p} vq · w(p, q)

∑
q∈{Ns

p+Nt
p+p} w(p, q)

, (3)

where the weighting w(p, q) is defined in an inverse propor-
tion to the color difference as:

w(p, q) = 1/(||cp − cq||2 + ε),
where ε is a small value for avoiding the division by zero,
and the L2-norm color difference is calculated in RGB color
space. Figure 2 shows the motion information before and
after the color-guided refinement. Even if there is a pixel p
has no motion information, Eq. 3 can also be used to obtain
the motion information from its neighboring pixels, which
improve the robustness of our system.

Fig. 2 The comparison of the optical flow before and after the color-
guided refinement. (a) Before the refinement, there are some noises in the
boundary region. (b) After the refinement, some noises are removed.

876
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 1 The statistics of standard deviation and weightings.

filename image sd motion sd color weighting motion weighting
walking bear 61.170 0.445 25.0 0.8
moving keyboard 51.114 0.677 12.0 12.0
running car 56.168 1.867 6.0 2.0
sitting toy 56.717 0.924 32.0 2.0
swimming fish 61.669 0.509 10.0 8.0

3.2 The Weightings

About the weightings of the smoothness terms α, β, and γ,

Fig. 3 (a) The plot of the standard deviations of motion with their cor-
responding weightings (i.e. γ). (b) The plot of the standard deviations of
color with their corresponding weightings (i.e. α).

although the user can leverage his or her high level knowl-
edge to control whether the data term or each smoothness
criteria should be prioritized, to make the system easier to
use, it is better to provide some guides for users to control
the process of parameter tuning rather than adjusting them
in a try-and-error fashion. In our experience, the temporal
coherence (β) does not cause too much difference, instead,
it is more critical to keep a good balance between the color
(α) and motion (γ) information.

To check the relationship of the weightings with the
color and motion information, we provide statistics-based
guess for the weightings and plot the standard deviation of
the color and motion with their corresponding weightings α
and γ in Fig. 3 (b) and Fig. 3 (a), respectively. Besides, val-
ues of parameters and standard variations are summarized
in Table 1. For motion (as shown in Fig. 3 (a)), the standard
deviation is roughly reversely proportional to the weighting
γ, while there is no such a clear relation for color (as shown
in Fig. 3 (b)). The ratio of color and motion is also roughly
proportional between their standard deviations and weight-
ings. However, although we have the above mentioned ob-
servation, more test data and their corresponding parameters
is needed to derive a qualitative rules for a statistical guess,
which may be one of our future work.

4. User Interface

4.1 Propagated Strokes

To make the system easy to use, we provide a stroke-based
user interface like other similar systems. However, to ask
the user to draw the strokes in the video volume like [8]
is not very intuitive. On the other hand, to let the user
only draw the strokes on certain frames makes him or her
hardly to draw some additional strokes on other frames if
he or she wants to modify the current segmentation result.
Hence, rather than asking the user to draw the strokes in
the video volume, we propagate the strokes drawn by the
user to indicate the foreground and background regions on a
certain frame to other neighboring frames according to the
motion information with light colors to make him or her to
understand how the strokes effect the segmentation result
and where to draw the additional strokes to improve the re-
sult as shown in Fig. 4.

As a fail-safe feature, the weighting of the propagated
strokes is in reverse proportion to the color difference be-
tween the pixel value under the original location and that
of the propagated location. The mechanism can prevent
the interference of inaccurate propagation. In addition, as

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
877

Fig. 4 The strokes drawn by the user are automatically propagated by
motion information. (a) The strokes drawn on a certain frame. (b) The
strokes automatically propagated to the neighboring frames by motion in-
formation for visualization with light colors.

Fig. 4 (b) shows, to make the impact of each stroke can be
easily understood by the user, our system shows the prop-
agated strokes with different alpha values, to indicate the
different weightings they possess.

4.2 Local Refinement by Additional Strokes

Due to the local color nature, it is usually the case that there
may be some regions that are hard to segment right in the
first time. Hence, we provide the facility to the user to refine
the result like [10]. In mathematical form, we encode the
constraint that the probability of the label change decreases
with the distance by adding a user term Eu(p) to Eq. 2 as:

E(lp) = Ed(p) + αEs(p) + βEt(p) + γEm(p) + κEu(p),

where Eu(p) is defined as:

Eu(p) = |lp − l′p|
argmins||xp − xs||

r
,

where |lp − l′p| is an indicator of label change from the orig-
inal label l′p to the new label lp of the pixel p, ||xp − xs|| is
the distance between the current pixel p to the pixel s under
the strokes drawn by the user, xp and xs denote the positions
of the pixels p and s, and r is a user-defined parameter to
control the range of the user attention. By encoding the con-
straint in the observations, the system successfully prevents
the over-expansion and over-shrinkage problems at once.

5. Results

In this section, we show some experimental results to com-
pare with previous methods. To visualize the results, red
color is used to blend with the foreground and blue color is
used to blend with the background. Note that in the results
presented in this section, strokes are drawn on the first frame
only, which is a quite challenging task for previous methods.

Figure 1 shows a comparison of the segmentation re-
sults of a walking bear video. Figure 1 (b) shows the re-
sult with smaller color smoothness weightings α and β and
Fig. 1 (c) shows that with larger ones by using Eq. 1 of [8]
and [12]. In contrast, with the motion smoothness term
shown in Eq. 2 we proposed, the result improves much as
shown in Fig. 1 (d). Due to the benefits of the motion
smoothness term, even the walking bear is occluded by the

Fig. 5 The walking bear is occluded by the tree trunk. (a) Without mo-
tion smoothness, it is hard to deal with the occlusion. (b) Combined the
motion smoothness with the color smoothness, the result improves much.

Fig. 6 The comparison of the segmentation results of a moving keyboard
video. In this video, the white keyboard is dragged on a white table. (a) One
frame of the original video. (b) Using smaller color smoothness weighting,
there are some errors between the keyboard buttons. (c) Using greater color
smoothness weighting, there are some foreground regions merged into the
background. (d) Our result.

tree trunk as shown in Fig. 5, we can still obtain an accept-
able result as shown in Fig. 5 (b).

Figures 6∼9 show other comparisons of our method
and previous ones by some different videos. In Fig. 6,
Fig. 6 (b) shows a sequence that has some wrongly labeled
background between the keystrokes, because the dark color
between the keystrokes is similar to some of the background
colors. Of course, one may raise the weighting of the color
smoothness term to solve the problem, but since there is a
strong data term penalty, the weighting of the color smooth-
ness term should be raised to a rather huge amount to com-
pletely fix the problem. Before that, the overly strong color
smoothness term introduces other artifacts. As shown in
Fig. 6 (c), some portions of the foreground, i.e. keyboard has
been wrongly labeled to the background, since the colors of
the table and the keyboard are similar. By only adjusting the
color smoothness term, they have the tendency to be labeled
as the same value. In contrast, if the motion information
could be utilized, it would be relatively easy to segment the
keyboard with the background as shown in Fig. 6 (d).

Similar to the above case, Fig. 7 (b) shows another ex-

878
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 7 The comparison of the segmentation results of a running car
video. In this video, the car is running on several colorful leaflets. Noted
that yellow circles are imposed to show the area that has major difference.
(a) One frame of the original video. (b) Using smaller color smoothness
weighting, there are some errors on the leaflets. (c) Using greater color
smoothness weighting, a part of the leaflets is labeled as the foreground.
(d) Our result.

Fig. 8 The comparison of the segmentation results of a sitting toy video.
In this video, the toy is static but the camera moves. Noted that yellow
circles are imposed to show the area that has major difference. (a) One
frame of the original video. (b) Using smaller color smoothness weighting;
some parts of the chair are labeled as the foreground. (c) Using greater
color smoothness weighting, a part of the toy is labeled as the background.
(d) Our result.

ample that the segmentation could not be done with color in-
formation alone, since the background color is too complex
and there are similar color between the car and the back-
ground colorful leaflets. As the background has some re-
gions similar to the foreground, it is usually the case that
the regions would be wrongly labeled as the foreground. If

Fig. 9 The comparison of the segmentation results of a swimming fish
video. (a) One frame of the original video. (b) Using smaller color smooth-
ness weighting, there are some errors in both the foreground and back-
ground. (c) Using greater color smoothness weighting, a part of the fish is
merged into the background. (d) Our result.

the weighting of the color smoothness term is raised to solve
the problem, it introduces other artifacts. As the foreground,
i.e. the toy car moves to the right, the background regions
that have similar color to the toy car would be “merged” as
the foreground, by using the preference with greater weight-
ing of the color smoothness term, as shown in Fig. 7 (c). In
this video, during the car running, the background colorful
leaflets also move to several different directions since the
leaflets are not fixed on the table. Since the motion patterns
are quite different for the foreground and background, even
some foreground and background regions have similar col-
ors and the background is also unstable, we can still obtain
an acceptable result as shown in Fig. 7 (d).

In Fig. 8, the toy is sitting on a wicker chair, the envi-
ronment is static but the camera is moving. Although the
difference of the motion patterns between the foreground
and background is not very much, the result is still im-
proved much by integrating the motion smoothness term.
Figure 8 (b) shows that with small color smoothness weight-
ing, the regions with similar dark color as the background,
such as eye, belt and mouth, would be wrongly labeled as
the background. In contrast, the region on the left hand (in
the right side of the image) in some frames is “merged” into
the background as shown in Fig. 8 (c). Figure 9 (b) shows
that with small color smoothness weighting, in the condi-
tion that the black side of the video has not been drawn
with the background stroke, it would be labeled as the fore-
ground, since its color is similar with the foreground color
model. However, if the system uses large color smoothness
weighting, some artifacts may be occurred, such as the re-
sult shown in Fig. 9 (c), where some of the regions on the
head of the fish have been “merged” into the background. In
contrast, our results are shown in Fig. 8 (d) and Fig. 9 (d).

The ratios of correctly segmented pixels for each result
are summarized in Tabel 2 by comparing the results of our

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
879

Table 2 The ratio of correctly segmented pixel.

filename proposed method previous method
walking bear 0.971 0.963
moving keyboard 0.984 0.972
running car 0.987 0.974
sitting toy 0.946 0.922
swimming fish 0.965 0.907

Fig. 10 Several frames of the manually labeled ground truth of walking
bear.

Table 3 The statistics of running time and dimensions.

video dimension running time (sec.)
walking bear 480 × 270 77.190
moving keyboard 480 × 360 84.831
running car 480 × 360 77.033
sitting toy 324 × 244 86.005
swimming fish 504 × 336 104.728

and previous methods to the manually labeled ground truth
as shown in Fig. 10. Although the differences are moderate,
by observing the figures, we can infer that the differences
are appeared in the regions that attract more user attention,
such as the border between foreground and background.

Note that the system is not aim at solving partial al-
pha. However, as long as a relatively accurate segmentation
could be achieved, it is straight forward to dilate the region
in the boundary binary segmentation to produce the trimap,
which is usually required by most matting processes. Hence,
by employing the state-of-the-art matting techniques, such
as Coherent Matting [17], we could also have the result of
video matting.

The system is implemented in C++, compiled under
GNU G++ 4.3 with maximal optimize level, and tested un-
der a Linux environment (Ubuntu 8.04) with a laptop PC
that equipped with a 3.2 GHz CPU and 3 GB RAM. The
computation costs about 1 or 2 minutes for a video with 20
frames, which does not include the calculation of the opti-
cal flow and its refinement. Since the content of the video
will not be changed during the video segmentation process,
the optical flow calculation and its refinement are performed
as an offline pre-processing. Table 3 lists the details of the
performance and dimension information for each test video.
For these cases, we should note that the user time is consid-
erably small, since there are only few strokes drawn on the
first frame only.

Fig. 11 An instance that hard to use motion information for segmenta-
tion: shot with unstable or irregular camera motion.

Fig. 12 Another instance that hard to use motion information for seg-
mentation: complex motion inside the foreground object.

Although the motion information works considerably
well in the clips that shot with a fixed camera, for the clips
that shot with a non-fixed camera, it becomes inaccurate to
use even with the above mentioned weighted-averaging.

Figure 11 shows an example that is shot with an un-
stable camera. The irregular of the camera produces noisy
optical flow information, which is difficult to be used since
it has no clear separation between the foreground and back-
ground. While actually there does have such separation in
the motion pattern from the train to the background.

It is also hard for complex motion. Figure 12 shows
such a case. As the fish move upward as a non-rigid body,
there has quite complex motion patterns between each part
of its body, which not only produces some noise during
the optical flow calculation process, but also encodes mo-
tion smoothness cost to prevent the body to be labeled as a
whole.

Besides, whenever the disocclusion occurs, in the first
few frames, the foreground may be wrongly labeled as the
background, since the region of the disocclusion regions
is rather small. In this situation, for a comparably high
smoothness term, which maybe necessary in global, may
cause the smoothness cost, rather than the data cost to dom-
inate the energy function minimization as shown in Fig. 13.

880
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 13 The system may fail in the first few frames after the disocclusion
occurs.

6. Conclusion and Future Work

A new video segmentation method is proposed in this pa-
per. The video segmentation problem is encoded into a
3D temporal-spatial graph that can be solved by the graph
cuts algorithm. Besides the traditional spatial color smooth-
ness and temporal coherence, we also encode the motion
smoothness into the formulation. In many cases, the sys-
tem with motion smoothness outperforms the traditional one
which takes only color information into account, even if the
foreground moving object is occluded or the difference of
the foreground and background movement is considerably
small. Besides this, we also provide a propagated-stroke-
based user interface, which allows the user to modify the
video segmentation result interactively and intuitively.

Although the motion information works well in the
video clips shot with a fixed camera or the moving cam-
era with stable movement, for the video clips that shot with
an unstable camera or by the camera with irregular camera
motion, the motion information becomes inaccurate to use,
since the irregular motion of the camera produces noisy op-
tical flow information, which is difficult to use for separat-
ing the foreground and background. To stabilize the video
clips by using methods such as [16], [18] before segmenta-
tion may be a possible solution to the problem. It is also
difficult if the foreground object has complex or irregular
motion patterns, such like a rapid swimming goldfish. We
could try to derive more sophisticated optical flow average
algorithm to improve the quality of the motion information.

By integrating the motion information into the video
segmentation, we can deal with the occlusion situation such
as the case shown in Fig. 5. However, first few frames of
the disocclusion might fail, since the comparably small dis-
occluded region may be smoothed by the color smoothness
term, while the motion information is not accurate enough
to produce a correct preference for motion segmentation.
Finding a more elaborated mechanism for temporal-spatial-
adapted parameter to deal with such a complicated case
would be part of our future work.

We are also considering to investigate the user behav-
ior for the user to draw the strokes by machine learning ap-
proaches. If we could mimic the pattern ordinary user draw
the strokes. A much accurate fully automatic image/video

segmentation framework may be proposed. Finally, it would
be interesting to find features other than color and motion to
separate the foreground and background.

Acknowledgement

This paper was partially supported by National Science
Council of Taiwan under NSC97-2622-E-002-010, and also
by the Excellent Research Projects of the National Taiwan
University under NTU97R0062-04.

References

[1] A. Blake and M. Isard, Active Contours, Springer, 1998.
[2] M. Gleicher, “Image snapping,” Proc. ACM SIGGRAPH 1995 Con-

ference, pp.183–190, 1995.
[3] E.N. Mortensen and W.A. Barrett, “Intelligent scissors for image

composition,” Proc. ACM SIGGRAPH 1995 Conference, pp.191–
198, 1995.

[4] T. Mitsunaga, T. Yokoyama, and T. Totsuka, “Autokey: Human as-
sisted key extraction,” Proc. ACM SIGGRAPH 1995 Conference,
pp.265–272, 1995.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.23, no.11, pp.1222–1239, 2001.

[6] V. Kolmogorov and R. Zabin, “What energy functions can be min-
imized via graph cuts?,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.26, no.2, pp.147–159, 2004.

[7] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol.26, no.9, pp.1124–
1137, 2004.

[8] Y. Li, J. Sun, and H.Y. Shum, “Video object cut and paste,” ACM
Trans. Graphics, vol.24, no.3, pp.595–600, 2005 (Proc. SIGGRAPH
2005 Conference).

[9] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping,” ACM
Trans. Graphics, vol.23, no.3, pp.303–308, 2004 (Proc. SIGGRAPH
2004 Conference).

[10] C. Wang, Q. Yang, M. Chen, X. Tang, and Z. Ye, “Progressive cut,”
Proc. ACM Multimedia 2006 Conference, pp.251–260, 2006.

[11] C. Rother, V. Kolmogorov, and A. Blake, “‘grabcut’: Interac-
tive foreground extraction using iterated graph cuts,” ACM Trans.
Graphics, vol.23, no.3, pp.309–314, 2004 (Proc. SIGGRAPH 2004
Conference).

[12] J. Wang, P. Bhat, R.A. Colburn, M. Agrawala, and M.F. Cohen, “In-
teractive video cutout,” ACM Trans. Graphics, vol.24, no.3, pp.585–
594, 2005 (Proc. SIGGRAPH 2004 Conference).

[13] J. Xiao and M. Shah, “Motion layer extraction in the presence of
occlusion using graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.27, no.10, pp.1644–1659, 2005.

[14] X. Bai and G. Sapiro, “A geodesic framework for fast interactive
image and video segmentation and matting,” Proc. 2007 IEEE Inter-
national Conference on Computer Vision, pp.1–8, 2007.

[15] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” Proc. 2004
European Conference on Computer Vision, pp.25–36, 2004.

[16] B.Y. Chen, K.Y. Lee, W.T. Huang, and J.S. Lin, “Capturing
intention-based full-frame video stabilization,” Comput. Graph. Fo-
rum, vol.27, no.7, pp.1805–1814, 2008 (Proc. Pacific Graphics 2008
Conference).

[17] H.Y. Shum, J. Sun, Y. Li, and C.K. Tang, “Pop-up light field: An in-
teractive image-based modeling and rendering system,” ACM Trans.
Graphics, vol.23, no.2, pp.143–162, 2004.

[18] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.Y. Shum, “Full-
frame video stabilization with motion inpainting,” IEEE Trans. Pat-

WEN et al.: VIDEO SEGMENTATION WITH MOTION SMOOTHNESS
881

tern Anal. Mach. Intell., vol.28, no.7, pp.1150–1163, 2006.

Chung-Lin Wen received the B.S. de-
gree in Information Management and the M.S.
degree in Computer Science and Information
Engineering from National Taiwan University,
Taipei, in 2006 and 2009, respectively. He was
a visiting graduate student to The University of
Tokyo from 2008 to 2009. His research inter-
ests include computer graphics, computer vi-
sion, computational photography and human-
computer interaction.

Bing-Yu Chen received the B.S. and M.S.
degrees in Computer Science and Information
Engineering from the National Taiwan Univer-
sity, Taipei, in 1995 and 1997, respectively,
and received the Ph.D. degree in Information
Science from The University of Tokyo, Japan,
in 2003. He is currently an associate profes-
sor jointly affiliated with the Department of In-
formation Management, Department of Com-
puter Science and Information Engineering, and
Graduate Institute of Networking and Multime-

dia, of the National Taiwan University, and is a visiting associate profes-
sor in the Department of Computer Science of The University of Tokyo.
His research interests are mainly for computer graphics, geometric model-
ing, image and video processing, and human-computer interaction. He is a
member of ACM, ACM SIGGRAPH, Eurographics, IEEE, and IICM.

Yoichi Sato is an associate professor jointly
affiliated with the Graduate School of Inter-
disciplinary Information Studies, and the Insti-
tute of Industrial Science, at the University of
Tokyo, Japan. He received the BSE degree
from the University of Tokyo in 1990, and the
M.S. and Ph.D. degrees in robotics from the
School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, in 1993
and 1997 respectively. His research interests in-
clude physics-based vision, reflectance analysis,

image-based modeling and rendering, tracking and gesture analysis, and
computer vision for HCI.

